plane polariser - определение. Что такое plane polariser
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое plane polariser - определение

TYPE OF WAVE PROPAGATING IN 3 DIMENSIONS
Plane waves; Plane Wave; Planewave; Plane-wave
  • The [[wavefront]]s of a plane wave traveling in [[3-space]]

plane polarization         
  • Diagram of the electric field of a light wave (blue), linear-polarized along a plane (purple line), and consisting of two orthogonal, in-phase components (red and green waves)
CONFINEMENT OF THE ELECTRIC FIELD VECTOR OR MAGNETIC FIELD VECTOR TO A GIVEN PLANE ALONG THE DIRECTION OF PROPAGATION
Linear Polarization; Plane polarization; Plane polarized; Linear polarisation; Linear polarized; Plane polarised; Linearly polarized light; Linearly polarized; Linearly-polarized
¦ noun a process restricting the vibrations of electromagnetic radiation, especially light, to one direction.
Derivatives
plane-polarized adjective
Supplementary Ideographic Plane         
  • A map of the Supplementary Ideographic Plane. Each numbered box represents 256 code points.
  • A map of the Supplementary Special-purpose Plane. Each numbered box represents 256 code points.
  • A map of the Tertiary Ideographic Plane. Each numbered box represents 256 code points.
  • A map of the Supplementary Multilingual Plane. Each numbered box represents 256 code points.
CONTINUOUS GROUP OF 65536 CODE POINTS IN THE UNICODE CODED CHARACTER SET
Basic multilingual plane; Basic Multilingual Plane; Supplementary Multilingual Plane; Plane One; Plane Zero; Plane Fifteen; Plane Sixteen; Supplementary Ideographic Plane; Plane Two; Supplementary Special-purpose Plane; Plane Fourteen; Plane 0; Plane 1; Plane 2; Plane 14; Plane 15; Plane 16; Astral character; Mapping of Unicode character planes; Unicode plane; Supplementary characters; Unicode planes; Tertiary Ideographic Plane; Private Use Plane; Astral plane (Unicode); Plane 15 (Unicode); Plane 16 (Unicode); Private use plane; Private use plane (Unicode); UCS-PUP15; PUP15; PUP16; UCS-PUP16; PUP15 (Unicode); PUP16 (Unicode); Supplementary plane; Unicode BMP; Private Use Planes; Plane 4; Plane 5; Plane 6; Plane 7; Plane 8; Plane 9; Plane 10; Plane 11; Plane 12; Plane 13; Supplemental Multilingual Plane; Supplemental Ideographic Plane; Supplemental Special-purpose Plane; Plane (unicode)
<text, standard> (SIP) The third plane (plane 2) defined in Unicode/ISO 10646, designed to hold all the ideographs descended from Chinese writing (mainly found in Vietnamese, Korean, Japanese and Chinese) that aren't found in the {Basic Multilingual Plane}. The BMP was supposed to hold all ideographs in modern use; unfortunately, many Chinese dialects (like Cantonese and Hong Kong Chinese) were overlooked; to write these, characters from the SIP are necessary. This is one reason even non-academic software must support characters outside the BMP. Unicode home (http://unicode.org). (2002-06-19)
Plane (geometry)         
  • right
FLAT, TWO-DIMENSIONAL SURFACE
Infinite Plane; Infinite plane; Plane coordinates; Plane coordinate; 2-dimensional space; Euclidean 2-space; Euclidean two-dimensional space; Two-dimensional Euclidean space; Plane (geometry)
In mathematics, a plane is a flat, two-dimensional surface that extends indefinitely.In Euclidean geometry it extends infinitely, but in, e.

Википедия

Plane wave

In physics, a plane wave is a special case of wave or field: a physical quantity whose value, at any moment, is constant through any plane that is perpendicular to a fixed direction in space.

For any position x {\displaystyle {\vec {x}}} in space and any time t {\displaystyle t} , the value of such a field can be written as

F ( x , t ) = G ( x n , t ) , {\displaystyle F({\vec {x}},t)=G({\vec {x}}\cdot {\vec {n}},t),}

where n {\displaystyle {\vec {n}}} is a unit-length vector, and G ( d , t ) {\displaystyle G(d,t)} is a function that gives the field's value as dependent on only two real parameters: the time t {\displaystyle t} , and the scalar-valued displacement d = x n {\displaystyle d={\vec {x}}\cdot {\vec {n}}} of the point x {\displaystyle {\vec {x}}} along the direction n {\displaystyle {\vec {n}}} . The displacement is constant over each plane perpendicular to n {\displaystyle {\vec {n}}} .

The values of the field F {\displaystyle F} may be scalars, vectors, or any other physical or mathematical quantity. They can be complex numbers, as in a complex exponential plane wave.

When the values of F {\displaystyle F} are vectors, the wave is said to be a longitudinal wave if the vectors are always collinear with the vector n {\displaystyle {\vec {n}}} , and a transverse wave if they are always orthogonal (perpendicular) to it.